
MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 1

Embedded Network Sensor Data and Decision
Management

Emmanuel Caillé, M.Eng, DCU

Abstract—As sensor networks are growing, it is more
an more difficult to efficiently handle data and decision
within the network. Different solutions have been studied
in previous works, but none of them allow to rule-program
an heterogeneous topology-independent network. A new
system is created to solve this, it uses broadcast to organise
the network as a tree and then send queries, the answer is
built while going up the tree. A prototype sensor network
has been successfully programmed with rules that use
global query to get an average value from the network,
some timing analysis has been done to check the scalability
of the system and highlight possible improvements. This
prototype is a proof that this system can efficiently handle
data in large networks; and the timing analysis has shown
that even better performance are possible.

Index Terms—M.Eng, sensor networks, query process-
ing, rule-based programming, data acquisition, network
topology independance.

I. INTRODUCTION

W ITH the improvements in circuit manufacturing,
sensors boards with processing capabilities are

now cheap and powerful, allowing the fast development
of sensor networks. Those networks get bigger, have
more and more data and can process more and more
information. This potentially huge amount of information
needs to be efficiently handled, especially if the network
has to be programmed to take its own decisions.

Sensor networks usually contain a lot of nodes, nodes
that can be different and that can host different kinds
of sensors and actuators. The network topology is not
always simple and can change frequently, some nodes
can become unreachable whereas some others can have
several network connections. Gathering data or sending
commands to a sensor network is not trivial.

Several systems exist to manage data in a sensor
network or decentralised system; most of them are in-
spired from biology examples such as the human nervous
system, the insects swarms or the cells communication.
But none of them allow an efficient management of data
and programming in an heterogeneous sensor network.

Manuscript last revised September 5, 2014.

How can data be efficiently aggregated in an heteroge-
nous sensor network ? How can any node be the center
of the network and receive this aggregated data ? How
can a sensor network be programmed with rules using
this data ?

In this project a new system is implemented using C++
and Boost [1] on BeagleBone boards. The system use
tree-shaped queries to aggregate data within the network,
reducing the network load and allowing the system to be
topology independent. The nodes can be programmed
with rules in the same way they are queried for data.
Different scenarios are tested using the example of a
smart building. Some performance tests are performed to
asses the system performance and to know the influence
of the number of nodes and their processing power.

II. EXISTING MANAGMENT MODELS FOR

DISTRIBUTED SYSTEMS

A lot of different solutions are used to manage data
in distributed systems and sensor networks, all with dif-
ferent levels of centralisation and programming abilities.

A. Cyber-physical

The first kind of solution is the cyber-physical model,
where the actions are separated on two levels : the
physical-reflex space with real-time reactions but no
knowledge of the full system, and the cyber space where
gloabal decisions can be taken but with more latency [2].
This model is interesting for large-scale fixed systems but
the cyber level requires a centralised server and is not
network independant.

B. Swarm behaviour

A second solution that doesn’t need a centralised
server is using the swarm behaviour; the three princi-
ples (separation, alignment and cohesion [3]) allow a
decentralised system to self-organize efficiently by using
direct and indirect communications between nodes [4].
It’s really efficient to manage moving systems and cover
a large area [5], but not to transmit information from a
node to an other.

MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 2

C. Cell communication

An other solution, inspired from biology cell commu-
nication, consists in sending the information to every
nodes, and a node will only accept it if it has the
correct receptor [6]. This solution is decentralised and
network-independant, it will keep working if the network
is modified; the downside is that it creates a lot of traffic
on the network when it could be avoided.

D. Tree-shaped network

A last solution is to send queries to the network from
any node, and the query will create a tree in the network
to reach every node and aggregate the answers on the
way back. This has been implemented with TinyDB
[7] but the team mainly focused on power consumtion
and low-level operations, using a specialized operating
system for nodes (TinyOS).

This project will use similar principles to TinyDB but
will focus on the rule-programming aspect and the inter-
operability, while keeping the network independance and
distribution aspect of TinyDB.

III. BUILDING A SENSOR NETWORK MANAGEMENT

SYSTEM

A. Global design

The system is built to follow several concepts which
ensure that the result will answer the problematic:

• The system work whatever the network topology,
and keep working if the topology is changed.

• The system is totally decentralised, meaning that
any node can either be considered as a server or a
client or a querier.

• Decisions can be taken both at the local level (on a
single node) or at the global level (using information
from several nodes).

• The system allow some interoperability, different
kind of nodes should be able to communicate with
each other.

Because of time constraint, everything can’t be imple-
mented, the focus has be given on some functionalities
more than others:

• Querying a node for local sensor values
• Programming a node to act according to local values
• Querying the whole network for an aggregated

value
• Programming the whole network (or a node) to act

according to an aggregated value
To do this, the same software run on each node,

it includes a server that listen for incoming messages,
a client that can be used to send messages, and a

processing part that process messages, answer them and
take decisions. Each node send a broadcast heartbeat so
that each node can know its neighbours. To minimise the
number of transmitted messages and allow a network-
independent execution, when sending a query for the
whole network, the network is arranged as a tree that
cover every nodes, and when answering the answers are
aggregated at each branch. This is explained with further
details in the next section.

B. Hardware

The system studied is a sensor network, it consists of
nodes linked together by at least one connection. The
nodes need a network connection, a good processing
capability and the possibility to have sensors and ac-
tuators. Embedded Linux boards answer all those needs;
the BeagleBone has been choosed for this project, as it
is a cheap board with a relatively powerful processor
and a lot of input/outputs. Each node can have a various
number of sensors (such as thermometers, light sensors)
and actuators (such as light, heaters, central heating).

C. Software

The system needs to be efficient, multi-platform and
easily modified; it means the programming language
have to be low level and compiled, multi-platform
(and/or using a multi-platform library), and object-
oriented. C++ seems to be the best choice, as it
provides everything that is needed; the Boost cross-
platform library will be used to handle the networking
(boost::asio [8]) and threading (boost::thread
[9]) aspect of the software.

D. Implementation

Each node runs an heartbeat server that periodically
sends a UDP broadcast packet with the node identifier;
every node directly connected (on the network layer 2)
will receive it and add the node to its neighbour list.

Data are exchanged between node by sending serial-
ized objects (messages) over a TCP connection. TCP has
been chosen to ensure the reliability of the transmission
and to ease the answering process (the connection stays
opened until the answer is received).

When dealing with a global query (query for several
nodes), the network [Fig.1] will be organised as a tree
[Fig.2], with the querier as the root [Fig.3], and when
answering the answers will be aggregated at each leaf.
To do that, the querier will send the message to each
neighbour, each neighbour will do the same, and so on
so forth until the network is totally covered. A node

MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 3

Fig. 1. A network (at level 2).

Fig. 2. Network organised as a tree, ununsed links are crossed.

Fig. 3. Same network organised as a tree with a different root.

will wait to get an answer from all its sons to answer
to its parent with the aggregated answer, it means that
each node only send one answer. To avoid creating loops,
each node has a list of the messages it has answered (or
is answering), and if it receives it again the message is
discarded.

The server and sending part is coded as a template, it
can be used to send and receive any kind of messages.
Two types are fully implemented : the data queries to get
information from sensors, and the programming queries,
to program a node with rules. There is a third type of
message: the answer message that is used to answer
queries with the values asked.

Sensors and actuators have both a name and a type
(implemented as a string). The couple name/type should
be unique, it can be used to identify a particular sen-
sor/actuator in queries or rules. Because of time con-
straints, only the sensor/actuator type is used as identifier
in the current implementation.

Programming a node with a rule is done by adding the
rule in the node’s rules list and running it in a thread.
A rule consists of a test, an action and a refresh delay.
The rule is run according to the delay, if the test return
true, the action is excecuted. The test consists of a sensor
description (like in queries), a comparison operator and

a value; the test send a query (it can be a global query)
and compare the result to the stored value. The action
consists of a description of actuators and an output state.
A rule is installed on a node only if this node has an
actuator concerned by the rule.

E. Class diagram

The code uses a central class called Node, it is where
all the instances are stored. It stores and runs the servers
(one for data query and one for rule-programming
messages), the heartbeat server, the list of sensors and
actuators, the list of rules, the neighbours nodes and the
list of already processed messages. See Fig.4.

F. Code

All the code has been developed specificaly for this
project, except the serialization of messages which is
managed by a class template from a boost::asio
example [10]. The code listing can be found in [11].

One of the most challenging part of the project was to
make sure that two different queries can be processed at
the same time on a node. It is done by using threads and
by sharing the boost::asio io_service [8], the
class that manage the network connections. The service
associated to this class is run several times in a Thread
pool.

IV. PROTOTYPE AND RESULTS

A. Mockup

The tests will be done using the example of a smart
building with temperature sensors and a central heating
system. The building manager should be able to program
the central heating to be active if the average temperature
of all the rooms in the building goes below a threshold
value.

The prototype doesn’t include real thermometers and
heating system, the sensors and actuators are virtual. The
prototype network consists of four nodes: a computer,
two BeagleBone Black and a BeagleBone White, they
are connected as shown in Fig.5. This network is small
but complex enough to test the different network features
such as answer aggregation and message forwarding.

Each node runs the same version of the code, has four
temperature sensors (representing four rooms), and has
a different identifier (name). One of the node (Beagle-
Bone 1) has an actuator (central heating).

B. Use case

Different use-case have been tested to check that the
functionnalities are working.

MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 4

Fig. 4. The Node class and its relationships with other class.

Fig. 5. The prototype network used for tests.

1) Simple query: Query from BeagleBone 1 to Bea-
gleBone 1, asking for temperature.

Query answered locally.
2) Global query: Query from BeagleBone 3 to all,

asking for temperature.
The query is sent to Computer and BeagleBone 2,

from Computer it is sent to Beaglebone 1.
BeagleBone 1 answer to Computer that aggregates it

with its answer and sends it to BeagleBone 3.
BeagleBone 2 answers directly.
BeagleBone 3 aggregates the answers, adds its own

values and gives the answer.
The tree created is illustrated on Fig.6.
3) Rule programming: Rule sent from BeagleBone 2

to all, Rule saying that, every minute, if the average value
from temperature sensors is below 18 the actuator central
heating is switched on.

As for the global query, the message is sent to every
nodes, following the same path.

BeagleBone 1 is the only node to accept the rule, as
it is the only one to have a central heating actuator.

The rule is run every minute. When run, BeagleBone 1
send a global query asking for the average temperature,
the answer is used by the rule.

Fig. 6. Message path for a global query from BeagleBone 3.

C. Limitations

Because of time constraint, some features are missing,
like message priority, portability tests and user-friendly
modifications.

Message priority is needed if the sensor network has
to deal with time critical systems or security features.
For smart building it could be smoke detectors: it is not
acceptable that a smoke detection query is slowed by a
temperature query.

The code is written in C++ and use Boost, so it
can theoretically run on any platform with a C++ com-
piler and a Boost library. The objects are serialized by
boost::serialization [12], so it should be the
same for any systems, allowing two different platforms
to communicate. Nevertheless, this hasn’t been tested.

Rules have been designed so that it will be easier to
create and implement new rules, but it still implies to
modify the code and re-compile the program, it could be
interesting to use something like parsing to allow the user
to create rules from configuration files without modifying
the code.

MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 5

V. PERFORMANCE AND TIME

The query system used (creating the tree-shape net-
work) may induce some delays in the answering process,
some additional tests have been conduced to get an
estimation of those delays.

In this benchmark, one node try to send a thousand
queries with different parameters, the execution time is
measured and used to calculate the message rate.

Before analysing the results, it should be kept in
mind that BeagleBone 2 is a BeagleBone White and
is less powerful than the Black version; Computer has
much more powerful processing capabilities than the
BeagleBone.

A. Sequential queries performance

The first scenario is used to measure the maximum
message throughput for queries to a single node with
two different ways. The first way is to send the messages
one by one and wait for the answer to send the next
one, the second is to send all the messages in the same
time, without waiting for the answer (threaded queries).
To increase the number of forwardings, the link between
BeagleBone 3 and Computer is cut for the two last tests.
The results are shown in Table I and Fig.7.

TABLE I
ONE-NODE QUERY RATE PER SECOND

Sequential Parallel
1 BB 3 ↔ Computer 140 170
2 BB 3 ↔ BB 2 125 110
3 BB 3 ↔ Computer ↔ BB 1 100 125
4 BB 3 ↔ BB 2 ↔ Computer 59 62
5 BB 3 ↔ BB 2 ↔ Computer ↔ BB 1 42 42

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(q

u
e

ry
/s

e
c
o

n
d

)

Scenario

Sequential
Parallel

Fig. 7. Query rate for different one-node query scenario.

Those results show two things. The first is what was
expected, adding more nodes as intermediary reduce the

throughput, and it seems that the added delay is not
linear. The second interesting thing is the influence of
processing power: when adding Computer as interme-
diate node, the throughput doesn’t change much, but
when adding the BeagleBone White (BB.2) it drops. And
sending parallel messages doesn’t improve it if there is
a slow node in the way.

So parallelizing is not really efficient for single-node
queries, but what about global queries ?

B. Global queries performance

For global queries, using sequential or parallel queries
has an impact on the shape of the resulting tree in the
network, the same conditions than for Fig.6 will give
a tree as shown on Fig.8. A global query is sent from
BeagleBone 3, the maximum throughput is measured and
shown on Table II and Fig.9.

Fig. 8. Possibles message paths with a sequential sending.

TABLE II
GLOBAL QUERY RATE PER SECOND

Sequential Parallel
1 Computer ↔ All 32 44
2 BeagleBone 3 ↔ All 29 36

 0

 10

 20

 30

 40

 50

 1 2

T
h

ro
u

g
h

p
u

t
(q

u
e

ry
/s

e
c
o

n
d

)

Scenario

Sequential
Parallel

Fig. 9. Query rate for different global query scenario.

The results show that, for global queries, parallelizing
is efficient. It’s understandable as in certain situations it

MENG IN TELECOMMUNICATIONS ENG, SEPTEMBER 2014 6

allows two node to process their answer in the same time.
It would probably be even more efficient on a bigger
network with several subnets.

C. Sequence diagram

The sequence diagram on Fig.10 gives more details
on the time spent by a global query with the sequential
sending. As for this prototype the network link are either
Ethernet or USB the network delay is really low. Most of
the time is spent on the nodes, especially the slow nodes
like BeagleBone 2. On of the reasons of this delay is
that nodes try to send the query to all their neighbours,
including the ones that already received it. This could be
improved by future work on this project.

Fig. 10. Sequence diagram of a global query with sequential sending.

VI. CONCLUSION

This project has shown that it is possible to aggregate
data in a sensor network by arranging it as a tree, and that
it works with any node being the querier. This network
can also be programmed with rules that use this kind
of queries to take decisions. This system is efficient to
reduce network load but can induce delays if the nodes
have a low power processing.

In a network where every node is in the same L2
network (meaning that every node is a neighbour of
every other node) the implemented solution may be
inefficient for global queries. The cause is that each node
will forward the queries to every other node, and even if
most of times the query will be rejected because already
answered, it will take time and network resources. This
could be solved by using a routing algorithm that will
help building the tree before sending the query. It could
also be reduced by adding the list of nodes that have
answered in the answer message.

REFERENCES

[1] (2014, Sep.) Boost c++ libraries. [Online]. Available: http:
//www.boost.org/

[2] Y. Wang, G. Tan, Y. Wang, and Y. Yin, “Perceptual control
architecture for cyber-physical systems in traffic incident man-
agement,” Journal of Systems Architecture, 2012.

[3] B. A. Kadrovach and G. B. Lamont, “A particle swarm model
for swarm-based networked sensor systems,” in Proceedings of
the 2002 ACM symposium on Applied computing. ACM, 2002,
pp. 918–924.

[4] D. J. Stilwell and B. E. Bishop, “A framework for decentralized
control of autonomous vehicles,” in Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference
on, vol. 3. IEEE, 2000, pp. 2358–2363.

[5] X. Cui, T. Hardin, R. Ragade, and A. Elmaghraby, “A swarm-
based fuzzy logic control mobile sensor network for hazardous
contaminants localization,” in Mobile Ad-hoc and Sensor Sys-
tems, 2004 IEEE International Conference on. IEEE, 2004,
pp. 194–203.

[6] F. Dressler, I. Dietrich, R. German, and B. Krüger, “A rule-
based system for programming self-organized sensor and actor
networks,” Computer Networks, vol. 53, no. 10, pp. 1737–1750,
2009.

[7] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tinydb: An acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems (TODS),
vol. 30, no. 1, pp. 122–173, 2005.

[8] C. M. Kohlhoff. (2014, Jul.) Boost::asio c++ library.
[Online]. Available: http://www.boost.org/doc/libs/1 56 0/doc/
html/boost asio.html

[9] A. Williams and V. J. B. Escriba. (2014, Jul.) Boost::thread
c++ library. [Online]. Available: http://www.boost.org/doc/libs/
1 56 0/doc/html/thread.html

[10] C. M. Kohlhoff. (2014, Jun.) Boost::asio object
serialization on top of a socket – class template.
[Online]. Available: http://www.boost.org/doc/libs/1 56 0/doc/
html/boost asio/example/cpp03/serialization/connection.hpp

[11] E. Caillé, “Source code listing,” Appendix C – MEng Final
Portfolio, Sep. 2014.

[12] R. Ramey. (2004, Nov.) Boost::serialization c++ library.
[Online]. Available: http://www.boost.org/doc/libs/1 56 0/libs/
serialization/doc/index.html

